PLOW BOLT

Tensile Strength and Ultimate Tensile Load Tightening Torque

Phone: ⁰⁷ 3268 7788 sales@sefqld.com.au

PLOW BOLTS - MIMIMUM TENSILE STRESS (lbf/in²)

Nominal	TPI	Stress Area	Grade
Size		in²	9
5/8"UNC	11	0.226	170,000
3/4"UNC	10	0.334	170,000
7/8"UNC	9	0.462	170,000
1"UNC	8	0.606	170,000
1-1/8"UNC	7	0.763	170,000
1-1/4"UNC	7	0.969	170,000
1-3/8"UNC	6	1.155	170,000

PLOW BOLTS - GUIDE TO TIGHTENING TORQUES (lbf.ft) ** SEE NOTE **

Nominal	TPI	Stress Area	Grade
Size		in²	9
5/8"UNC	11	0.226	238.4
3/4"UNC	10	0.334	422.7
7/8"UNC	9	0.462	682.2
1"UNC	8	0.606	1022.6
1-1/8"UNC	7	0.763	1448.5
1-1/4"UNC	7	0.969	2044.0
1-3/8"UNC	6	1.155	2670.2

k Factor = 0.2

The induced load is calculated at 75% proof load stress

For further technical Information please contact Southeast Fasteners direct

PLOW BOLTS - MIMIMUM ULTIMATE TENSILE LOAD (lbf/in²)

Nominal	TPI	Stress Area	Grade
Size		in²	9
5/8"UNC	11	0.226	38,420
3/4"UNC	10	0.334	56,780
7/8"UNC	9	0.462	78,540
1"UNC	8	0.606	103,020
1-1/8"UNC	7	0.763	129,710
1-1/4"UNC	7	0.969	164,730
1-3/8"UNC	6	1.155	196,350

Note:

The tightening torque values given in the above table serve only as a guide. A k factor of 0.2 has been used which assumes threads are plain finish, burr free with a light oil coating. It should be noted that these figures are based on the first tightening of single assemblies in isolation.

